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Abstract. The multi-species Boltzmann equation is numerically integrated to characterize the internal structure of a Mach
3 shock wave in a hard sphere gas. The collision integral is evaluated by the conservative discrete ordinate method of
Tcheremissine [1]. There was excellent agreement of macroscopic variables with those of Kosuge, Aoki, and Takata. [2]
The effect of species concentration and mass ratio on the behavior of macroscopic variables and distribution functions in
the structure of the shock wave is considered for both two and three-species gas mixtures. In a binary mixture of gases with
different masses and varying concentrations, the temperature overshoot of the parallel component of temperature near the
center of the shock wave is highest for the heavy component when the concentration of the heavy component is the smallest.
A physical basis for the temperature overshoot is put forth.
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INTRODUCTION

There is considerable challenge in the design of aerospace vehicles flying at high altitude in the transitional flow
region [3]. In the gas kinetic description, intermolecular collisions change the translational, rotational, vibrational,
and electronic energies of the collision partners. For a two-species gas mixture, if the masses are equal (mA = mB),
the translational energy relaxation time (τtrans) is of the order of the mean free time (τ0) in the equilibrium gas.
For elastic collisions, the energy exchange is comparable to the energy of the species before collisions. FormA �
mB, τtrans∼ mA

mB τ0 and for mA � mB, τtrans∼ mB

mA τ0. When the difference in molecular masses is large, it may be
concluded qualitatively that the difficulty in exchanging energy leads to an increase in relaxation time. The work
of Tcheremissine [4] outlines the method for the prediction of the macroscopic variables for a Mach 2 shock wave
structure consisting of a mixture of two gases. The present study extends a single component Boltzmann flow solver
based on the method of Tcheremissine [1] to a multi-species Boltzmann solver and characterize a Mach 3 shock wave
structure of inert gas mixtures. The paper generalizes the method so that gas mixtures with more that two species can
be treated, that has not been done in earlier studies. One of the objectives of the paper is to provide a better physical
insight into the flow physics of shock wave structures. Previous work by Josyula, et al [5] addressed accuracy issues,
particularly the requirement of the velocity grid resolution for simulating the internal structure of a shock waves in a
single component monatomic gas. The direct numerical integration of the Boltzmann equation for the inert gas mixture
is a first step towards extending the solution to inelastic and reactive collisions. The present study is generalized for an
inert mixture and considers gas mixtures consisting of two and three species to study the nonequilibrium relaxation in
the internal structure of the Mach 3 shock wave. It provides physical insight into the observed physical phenomenon
relating to the dynamics of the relaxation of the different species in the shock wave structure.

DISCRETIZED FORM OF MULTI-SPECIES BOLTZMANN EQUATION

The Boltzmann equation expresses the behavior of many-particle kinetic system in terms of the evolution of the particle
distribution function. The Boltzmann equation is written as
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+ξ
∂ f
∂x

= I(ξ ) (1)



where the distribution function,f dξ dx gives the number of molecules at positionx and velocityξ at timet. The left
hand side of the above equation represents the continuum flow, and the right side denotes the collision term leading
to discontinuous jumps in phase space. If the distribution functionf is known, the macroscopic variables of the mass,
momentum, energy and stress can be obtained by appropriate weighting and integration.

When considering gas mixtures, inelastic collisions and reactive energy exchanges, it is convenient to transform the
distribution function from velocityξi to momentumpα

i variables withpα
i = mα ξi and f (ξ ,x, t)→ f α(pα ,x, t). Here

pA
i is the initial momentum of speciesα. Each species,α, in the system is cast on a gridxi in the configuration space

with κ nodes and a uniform three dimensional grid,pα
γ in momentum space (the subscriptγ denotes a momentum

node) withN0 nodes. Thus the system of species Boltzmann equations takes the form

∂ f α

∂ t
+

pα
i

mA

∂ f α

∂xi
= Iα f or speciesα = A,B, ... (2)

The number of species in the gas mixture is denoted byS. The elastic collision integral for speciesα takes the form
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S

∑
j=A
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0
( f̃ j f̃ α − f j f α)gα jb db dϕ dp j (3)

Herebm is the maximum impact parameter withb andϕ characterizing the impact for collision between speciesj and

α. The relative velocitygα, j is | p j

mj -
pα

mα |. Thetilde quantities denote the post-collision values.
In the basis of three-dimensional delta functions, the distribution function and the collision integral are represented

in the form.

f α(p,x, t) =
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γ=1

f α
γ (p,x, t)δ (p−pγ), Iα(p,x, t) =
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∑
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Iα
γ (x, t)δ (p−pγ) (4)

After determining the expansion coefficients for the collision integral in the Eqns 4, the problem is reduced to solving
the coupled system of equations
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γ α = A,B, ...S γ = 1,2, ...N0 (5)

The conservative numerical method of Tcheremissine [4], extended to multiple species, is employed. The eight
dimensional collision integral is evaluated on a uniform grid following the method of Tcheremissine [1, 4].

The internal shock structure of the Mach 3 shock wave was simulated in the present study. The Rankine-Hugoniot
conditions across the shock wave forγ=5/3 consist of: downstream (Md)=0.522,pd/pu=11, ρd/ρu=3, Td/Tu=3.667.
The steady flow is treated as one-dimensional in the configuration space and three dimensional in momentum space.
A uniform equilibrium state is assumed far upstream and downstream of a standing normal shock wave. Number
conservation, conservation of total momentum and conservation of total energy lead to a generalized set of Rankine
Hugoniot relations [2]. The distribution function boundary conditions up and downstream were specified by a drifting
Maxwellian. Four cases are presented in this paper. The first three cases have a mass ratio (mA : mB)=0.5, the same
diameter ratio and concentration ratio of species B,χB=0.1, 0.5, and 0.9. The fourth case is a three-species inert gas
mixture withmA : mB : mC=1:0.9:0.8,dA : dB : dC=1:1:1, andχA : χB : χC=1:2:3. Note: (1) By convention the nominal
mass is that of species A, (2)χα ≡ Nα

∑S
j=1 Nj

.

RESULTS AND DISCUSSIONS

The shock wave structure in a two- and three-species gas mixture of inert gases was analyzed for a variety of mass
ratios and molecular diameters in the hard sphere collision approximation. Validation results are presented initially
for the multi-species solver. Fig. 1 shows the individual species’ densities and mixture density in the Mach 3 shock
wave structure for mass ratio of 0.5, diameter ratio of 1, and for different concentrations of species B. The density
is normalized with its upstream value. For all concentrations considered,χB=0.1, 0.5, and 0.9 (Fig. 1a, b, and c) the
lighter component (species B) transitions earlier from its undisturbed upstream condition to the shock and maintains a
slightly higher density than the heavier component throughout the shock wave.



The streamwise velocity component is shown for the Mach 3 shock wave in Fig. 2 for different concentrations of B
(χB) of 0.1, 0.5, and 0.9 for mass ratio of 0.5, diameter ratio of 1. The velocity of the lighter component, species B,
transitions earlier from its undisturbed freestream value to the shock wave for all concentrations considered.

It is noted that forχB=0.1 (Fig. 2, the frequency of collisions for A-A particles is highest, followed by A-B, then BB.
This behavior governs the differing relaxation times for the collisions between different collision partners,τAB > τAA.
The magnitude and trends of velocity and density profiles in the shock wave noted above (Fig. 1 and 2) is evidence of
conservation of mass flux in the different gas mixtures. In summary, for a gas mixture with fixed values of mass ratio
and diameter ratio, the concentration ratio has very little effect on mixture density, velocity, and temperature. There is,
however, an effect of varying the concentration on the individual temperatures, as well as the component temperatures,
Tx andTy, (discussed next).

Fig. 3 shows parallel and perpendicular components of temperature (Tx andTy) and the mixture temperature for
the three concentrations,χB=0.1, 0.5, and 0.9 for mass ratio of 0.5, and diameter ratio of 1. The parallel (Tx) and
perpendicular (Ty) components of the temperature are calculated from their corresponding pressure components,

kTx = mu′2 = pxx/n andkTy = mu′
2
= pyy/n. For all three concentrations, there is overshoot of parallel component

(Tx) for both the heavier (species A) and lighter species of the gas mixture. TheTx component of the heavier particle
(species A) has a greater magnitude and overshoot than that of specie B. It is also noted that the greater the value of
χB, the higher the overshoot of theTx for both the heavier species (species A) and lighter species.

Fig. 4 and 5 depict the parallel and perpendicular components of the momentum distribution function for the binary
gas mixture (Species A and B) forχB=0.1, 0.5, and 0.9 for mass ratio of 0.5, and diameter ratio of 1. Species A is
the heavier component and Species B the lighter. Comparisons of results of the Species A (heavier) and Species B
(lighter) shows that the momentum distribution function of the parallel component is wider, which can be related to
the temperature overshoot for theTx component seen in the preceding figure (Fig. 3). Similarly, on comparing the
momentum distribution functions of the parallel components for various values ofχB, one sees that the width of the
distribution function is highest forχB=0.9, followed by 0.5 and then 0.1, which can be related to the overshoot of the
parallel (Tx) component, the highest forχB=0.9, followed by 0.5 and then 0.1 (Fig. 3).

Results for a three-species gas mixture are presented for differing mass ratios, with the same diameter ratio, and
variation in concentration ratios for the three species. Fig. 6 shows the velocity distribution function for the three
species A, B, and C at different locations in the shock wave. At locations inside the shock wave,X/λ=-0.4 and
X/λ=+2, one can see a non-Maxwellian distribution. It is noted that for the three-species gas mixture with small
variation in mass ratio and identical diameter ratio, the size of the distribution function is found to increase with the
concentration ratio.

CONCLUDING REMARKS

A numerical study was performed for the solution of the internal structure of shock waves in monatomic gas mixtures,
assuming the hard sphere collision model. The multi-species Boltzmann equation was solved by the conservative
discrete ordinate method of Tcheremissine. Macroscopic parameters predicted in the present study for Mach 3 shock
wave agree well with those from the previous work of Kosuge, Aoki and Takata. The effect of species concentration
and mass ratio in the shock wave was presented by macroscopic variables and distribution functions.

The temperature overshoot of the parallel component near the center of the shock wave is highest for the heavy
component when the concentration of the heavy component is the smallest. The relative comparison of the parallel and
perpendicular components of momenta shows that the parallel component has a wider distribution, which manifests
as a temperature overshoot. The relative magnitudes of the parallel temperature overshoots for different mixture
concentrations correspond with the relative magnitudes of widths of parallel component momentum distribution
functions.
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FIGURE 1. Density distribution in a Mach 3 shock wave with hard sphere collision model for mass ratio of 0.5, diameter ratio
of 1, and concentration as (a)χB=0.1, (b)χB=0.5, (c)χB=0.9

FIGURE 2. Streamwise velocity distribution in a Mach 3 shock wave with hard sphere collision model for mass ratio of 0.5,
diameter ratio of 1, and concentration as (a)χB=0.1, (b)χB=0.5, (c)χB=0.9
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FIGURE 3. Temperature distribution in a Mach 3 shock wave with hard sphere collision model for mass ratio of 0.5, diameter
ratio of 1, and and concentration as (a)χB=0.1, (b)χB=0.5, (c)χB=0.9

FIGURE 4. Components of momentum distribution function in a Mach 3 shock wave with hard sphere collision model for mass
ratio of 0.5, diameter ratio of 1,χB=0.1, for Species A (heavier)



FIGURE 5. Components of momentum distribution function in a Mach 3 shock wave with hard sphere collision model for mass
ratio of 0.5, diameter ratio of 1, for (a) Species A (heavier),χB=0.1, (b) Species B (lighter),χB=0.1, (c) Species A (heavier),
χB=0.5, (d) Species B (lighter,)χB=0.5, (e) Species A (heavier),χB=0.9, (f) Species B (lighter),χB=0.9

FIGURE 6. Velocity distribution function inside a Mach 3 shock wave with hard sphere collision model,(a) x/λ=-∞, (b) x/λ=-4,
(c) x/λ=2, (d) x/λ=∞


